博客
关于我
Luogu P4844 LJJ爱数数
阅读量:325 次
发布时间:2019-03-01

本文共 2772 字,大约阅读时间需要 9 分钟。

题目链接

题解

1 a + 1 b = 1 c \frac{1}{a}+\frac{1}{b}=\frac{1}{c} a1+b1=c1

b c + a c = ( a + b ) c = a b bc+ac=(a+b)c=ab bc+ac=(a+b)c=ab
g = gcd ⁡ ( a , b ) , A = a g , B = b g g=\gcd(a,b),A=\frac{a}{g},B=\frac{b}{g} g=gcd(a,b),A=ga,B=gb,则有
g ( A + B ) c = A B g 2 ( A + B ) c = A B g g(A+B)c=ABg^2\\ (A+B)c=ABg g(A+B)c=ABg2(A+B)c=ABg
由于 c ̸ = 0 , g ̸ = 0 c\not= 0,g\not= 0 c̸=0,g̸=0
A + B g = A B c = k \frac{A+B}{g}=\frac{AB}{c}=k gA+B=cAB=k
假设 k ≥ 2 k\geq 2 k2,那么 A B = k c AB=kc AB=kc,由于 gcd ⁡ ( A , B ) = 1 \gcd(A,B)=1 gcd(A,B)=1,因此 k ∣ A k|A kA k ∣ B k|B kB,不可能同时满足,那么 k ∤ A + B k\nmid A+B kA+B,但是 A + B = k g A+B=kg A+B=kg,推出矛盾,因此 k = 1 k=1 k=1

那么

A + B = g , A B = c A+B=g,AB=c A+B=g,AB=c
如果已经得到了 g g g A A A,满足题目要求的条件就是
gcd ⁡ ( A , g − A ) = 1 , ( g − A ) A ≤ n , A g ≤ n , ( g − A ) g ≤ n \gcd(A,g-A)=1,(g-A)A\leq n,Ag\leq n,(g-A)g\leq n gcd(A,gA)=1,(gA)An,Agn,(gA)gn
容易发现
gcd ⁡ ( A , g ) = 1 , 2 ≤ g ≤ 2 n , max ⁡ ( g − ⌊ n g ⌋ , 1 ) ≤ A ≤ min ⁡ ( ⌊ n g ⌋ , g − 1 ) \gcd(A,g)=1,2\leq g\leq \sqrt{2n},\max(g-\lfloor\frac{n}{g}\rfloor,1)\leq A\leq \min(\lfloor \frac{n}{g}\rfloor,g-1) gcd(A,g)=1,2g2n ,max(ggn,1)Amin(gn,g1)
因此反演求出一段区间内与 g g g互质的数的个数即可。

注意这题卡时限,必须预处理出每个数的约数,还要用邻接表存,不能用vector,否则会TLE……

代码

#include 
#include
#include
#include
template
T read(){ T x=0; int f=1; char ch=getchar(); while((ch<'0')||(ch>'9')) { if(ch=='-') { f=-f; } ch=getchar(); } while((ch>='0')&&(ch<='9')) { x=x*10+ch-'0'; ch=getchar(); } return x*f;}const int maxn=1414213;const int maxm=13288457;int p[maxn+10],prime[maxn+10],cnt,mu[maxn+10],pre[maxm+10],now[maxn+10],son[maxm+10],tot;int add(int a,int b){ pre[++tot]=now[a]; now[a]=tot; son[tot]=b; return 0;}int getprime(){ p[1]=mu[1]=1; for(int i=2; i<=maxn; ++i) { if(!p[i]) { prime[++cnt]=i; mu[i]=-1; } for(int j=1; (j<=cnt)&&(i*prime[j]<=maxn); ++j) { int x=i*prime[j]; p[x]=1; if(i%prime[j]==0) { mu[x]=0; break; } mu[x]=-mu[i]; } } for(int i=1; i<=maxn; ++i) { if(!mu[i]) { continue; } for(int j=1; j<=maxn/i; ++j) { add(i*j,i); } } return 0;}inline long long solve(int x,int l,int r){ long long ans=0; for(int i=now[x]; i; i=pre[i]) { int k=son[i]; ans+=mu[k]*(r/k-l/k); } return ans;}long long n;int main(){ getprime(); n=read
(); long long ans=0; int mx=sqrt(2*n)+0.5; for(int i=2; i<=mx; ++i) { ans+=solve(i,std::max(1ll,i-n/i)-1,std::min(n/i,i-1ll)); } printf("%lld\n",ans); return 0;}

转载地址:http://djwo.baihongyu.com/

你可能感兴趣的文章
Mysql 数据库重置ID排序
查看>>
Mysql 数据类型一日期
查看>>
MySQL 数据类型和属性
查看>>
mysql 敲错命令 想取消怎么办?
查看>>
Mysql 整形列的字节与存储范围
查看>>
mysql 断电数据损坏,无法启动
查看>>
MySQL 日期时间类型的选择
查看>>
Mysql 时间操作(当天,昨天,7天,30天,半年,全年,季度)
查看>>
MySQL 是如何加锁的?
查看>>
MySQL 是怎样运行的 - InnoDB数据页结构
查看>>
mysql 更新子表_mysql 在update中实现子查询的方式
查看>>
MySQL 有什么优点?
查看>>
mysql 权限整理记录
查看>>
mysql 权限登录问题:ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: YES)
查看>>
MYSQL 查看最大连接数和修改最大连接数
查看>>
MySQL 查看有哪些表
查看>>
mysql 查看锁_阿里/美团/字节面试官必问的Mysql锁机制,你真的明白吗
查看>>
MySql 查询以逗号分隔的字符串的方法(正则)
查看>>
MySQL 查询优化:提速查询效率的13大秘籍(避免使用SELECT 、分页查询的优化、合理使用连接、子查询的优化)(上)
查看>>
mysql 查询数据库所有表的字段信息
查看>>